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Abstract

A two-dimensional MHD model was developed for the phases
after the first fast compression of theta pinch discharges.
This model was tested by comparison with theoretical and
experimental results; it turned out that the model aptly
describes the quasistationary phases of theta pinches, 1i.e.
it is suitable for predicting theta pinch experiments and,
in particular, is an important aid for interpreting
measurements.

A detailed energy balance is made to determine quantities
that cannot readily be measured and to discuss the relations
between various effects.

It is found that the plasma in the late phases 1is only
adiabatically heated. The relaxation of temperature and
anisotropy is discussed, particular attention being paid to
interaction with heavy impurity ions and to determining the
temperature of these ions from Doppler profiles of spectral
lines.

Finally, on the one hand, the dominant contribution of
convection to the end losses is demonstrated by means of a
detailed enerqgy balance; on the other, the relevance of
thermal conduction to the axial dynamics inside the coil is
explained.
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1. Introduction

The linear theta pinch is an experimental configuration for
producing plasmas of high density and temperature. Unlike
the =z-pinch it 1is less subject to dangerous instabilities
during the lifetime of the plasma, which is 1limited mainly
by the length of the compression coil.

The effects of the compression and heating of the plasma
have heen the subject of numerous theoretical and
experimental investigations /1/ , /2/ , /3/ . Relatively
fast compression leads to high energies of the ions /4/ , at
first only in two degrees of freedom perpendicular to the
magnetic field, i.e. the perpendicular component of the ion
pressure. The parallel component of the ions changes as a
result of binary collisions; this reduces the anisotropy of
the ion pressure. Unlike the ions, the electrons with their
different sound velocities are not shock-heated by the
compression wave, but rise in temperature essentially owvwing
to ohmic heating. In many cases, however, this resistive
heating is not «classical, 1i.e. the specific electrical
resistivity according to Spitzer /5/ must be replaced by an
anomalous resistivity 6/ , /77/.

So far the essential physical processes determining the
behaviour of linear theta pinches have been described by
several one-dimensional c¢odes /8/ , /9/ , 710/ , which are
all based more or less on the Hain-Roberts code /11/ . But
the results of these models are limited by two different
obstacles: for the very fast compression of 1low-density
plasmas magneto-hydrodynamic models are not applicable; a
numerical treatment that makes better allowance for shock
wave phenomena /12/ provides a more useful description in
this parameter regime. On the other hand, for
investigations of the phases after the first implosion the
plasma is strongly affected by end effects. The first
attenpts to describe the end losses have been 1D axial
programmes /13, , /14y , /15/ . But a major disadvantage
has been that they assumed box profiles 1in the radial
direction. Effects arising from superposition of radial
compression and axial 1losses could not be adequately
described. The end losses influence the radial processes
and hence render measurements difficult to interpret; the
individual effects can no longer be decoupled.

Therefore, a two-dimensional model was designed, which
starts after the first implosion phase -in order to avoid
the very complicated processes occurring in this phase- but
could describe the plasma behaviour in the quasistationary
phases as well as possible, in particular, the axial
dynamics. The MHD approximation could be used because in
most cases it affords an appropriate description of the
macroscopic behaviour of the plasma in the late phases of
theta pinch discharges. Even in the parameter regime of
relatively collisionless plasmas the MHD equations and the




transport coefficients still yield satisfactory results.
The alternatives of the MHD approximation, viz. plasma
simulation /16/ , /17/ or solution by direct integration of
the kinetic equation /18/ are too expensive for the
computers available at present.

In the model used here, the plasma is described ty the
quantities Qts Vsi of D% 4. D¥pe S P and B as functions of
the radius r, the axial distance =z, and the time t.
Tnfinite electrical conductivity is assumed, but it <can tLe
shown that this 1is well Jjustified during the adiabatic

phases of plasmas of fairly high temperatures. For the
numerical treatment of the problem magnetic field
coordinates are used, which ensures a more accurate

description of the processes along the magnetic field lines,
especially the heat conduction parallel to the magnetic
field. A simpler two-dimensional MHD model 19/ using a
coordinate systenm matched to the boundary conditions
suggested this new approach.

The aim of this study is to investigate the behaviour of
theta pinch plasmas in the phases following the first fast
compression, particularly the heating of the plasma and the
relaxation of the mostly anisotropic deuterons in relation
to the losses at the end of the coil. The investigations
are based on detailed measurements on ISAR II (and some on
ISAR TI), all of the results being compared with the
corresponding values obtained in the two-dimensional
computer programme. ‘
The quality of the information gained by this computer code
was tested beforehand by comparison with analytical models
and 1D computer programmes. Apart from a brief description
of the model, this comparison with theoretical results forms
the essential content of chapter 2 (MHD model).

Chapter 3 (comparison of measurements and calculations) is
primarily intended to demonstrate that the model properly
describes the theta pinch plasma. The importance of the
computer experiment for interpreting measurements is
illustrated by the Doppler broadening of spectral lines.

In chapter 4 the conmputer experiment is then used to discuss
the following problems: firstly, the relaxation of the
temperature and primarily of the anisotropy are considered;
that 1is, the question how well the «coefficients used
describe these processes and, in particular, how valid the
model of binary collisions is. Secondly, a detailed energy
balance is made to determine the influence of thermal
conduction and convection on the axial dynamics and the
losses at the edge of the plasnma.

Some results of these investigations are not restricted to
linear theta pinches, but are applicable to toroidal
confiqurations too. 1In a certain sense this 2L conmputer
experiment represents an important intermediate step towards
the very elaborate 3D codes, which will be required for
describing curved configurations. This, however, will only
become feasible with the next computer generation.



2. Magnetohydrodynamic Model

2.1 Basic_equations_and coefficients

The magnetohydrodynamic (MHD) equations describe the plasma
in terms of hydrodynamics and electrodynamics; that is, the
plasma is regarded as a fluid subjected to electromagnetic
fields s20/ . The fluid equations are obtained as a moments
expansion of the Boltzmann or Fokker-Planck equation /21/ .
But the equation for the n-th moment still includes the
(n+1)-th moment. 1In order to complete the system, this next
higher moment has to be determined in another way; viz. in a
13-moment approximation in the equaa}on for the pressure
tensor P the pressure transport tensor is included /22, .
Under certain conditions this tensor of rank three can bhe
contracted to a vector, namely the heat flux.

The plasma can be regarded as a fluid if the mean free path
is small compared with the characteristic dimensions of the
vessel.

With this rather general model as a starting point, the
following simplifications are made: (1) a fully ionized
plasma is assumed; (2) quasineutrality can be assumed if the
characteristic frequencies are smaller than the plasnma
frequency or 1if the characteristic lengths are larger than
the Debye length.

Under these conditions the two continuity equations for the
electrons and 1ions can be combined to give an equation for
the mass density ¢ . The two equations for the velocities
v® and V¥ can be combined in any ,case, and so one obtains an
equation for the mass velocity V and one for the current Je
The first equation is the equation of motion for the whole
plasma, the second is the generalized Ohm's law.

In Maxwell's equations the displacement current is ignored
(3) since the propagation velocity of the phenomena
investigated is small relative to the light velocity.

Under certain conditions the generalized Ohm's law can be
simplified (4): the inertia terms can be omitted if the
frequencies remain small; if azimuthal symmetry is assumed
and Be 1is neglected, the current den51ty 3 has only a
© -component, i.e, the Hall term 3JxB only makes a
contribution to the electric field strength normal to the
flux surfaces; the pressure gradients are ignored since
©fRe << (Vv )®, where W, = eB/mlc is the electron
cyclotron frequency and v% is the thermal velocity of the
electrons),_the term m®/m* ¥ p* can always be neglected
since n&/m¢ << 1, .

The most essential constraint is the assumption of infinite
electrical®eonducivVity (5 i({S =99) ., As will be found,




however, this is an adequate approximation for the cases
investigated here. This assumption not only simplifies the
system of equations, it also allows a numerically effective
solution method.

From assumptions (4) and (5) it follows that flux
conservation 1is satisfied, this being expressed Lty Eq. (9).
This yields the following system of basic equations  (MDH
model) for the quantities: 18 ¢ Vo D7 Poa1B% 3 BasJeBof =
f(x,t).

Moment equations:
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Maxwell's equations:
1 B =-Vx E 6
c o - v x (6)
- ¢ - —
j = — ¥V x B 7
) Tr (7)
V-B =0 (8)
Ohm's law:
v 2[FxB]=0 (9

Equation (1) is the continuity equation; the equation of
motion (2) differs from the . corresponding equaticn of
hydrodynamics essentially with respect to the Lorentz force
j x B, Besides containing the heat fluxes S, the pressure
equations (3), (4) and (5) also include collision terms J,
which describe the temperature relaxation between electrons



and ions and the relaxation of the temperature anisotropy of
the ions due to binary <collisions. These relaxation
coefficients J and the heat fluxes S were taken from
Chodura-Pohl /23/. The description of the anisotropy
relaxation is equivalent to the formulation of Lehner 25/
and has already been used in a simpler form by Kogan /24/.

Magnetic field coordinates were used for treating the
problem; compared with cylindrical coordinates, the set of

surfaces r = const is replaced by surfaces of constant
magnetic flux F or, to be more precise, by a function
s(F) . This coordinate system is better suited to the

problem siance many physical phenomena occur preferentially
along the magnetic field surfaces {e.g. heat fluxes). Last
but not least, this is seen 1in a more exact numerical
treatment since the numerical diffusion due to interpolation
is absent.

These curvilinear coordinates are in general non-orthogonal
and time dependent. With infinite electrical «conductivity
the plasma 1is tied to the field lines, i.e. the motion of
the plasma normal to the field lines 1is described &Ly the
change of the coordinate system. This motion is given by
the compression term DIVW, which occurs on transformation
of the fundamental equations. The curvature of the magnetic
surfaces is expressed by another term G7.
> —d

The quantities E and 3j can be eliminated from the
fundamental equations., The magnetic field is described by
the inverse of the flux function s(r,z,t), i.e. the function
R(s,z,t), where R is the radius of the flux tube s.

2
If azimuthal symmetry 55 = 0 is assumed and the azimuthal
component of the magnetic field and the velocity (Be = Ve
= N0) are ignored, transformation of the fundamental

equations (1) to (9) vyields a system of differential
equations for the quantities Q , vz , ws , P%, P + P
Br, B2 . Here vy 1is the velocity of the plasma along the
field lines; the velocity vs , i.e. the motion of the plasma
relative to the magnetic field lines, vanishes owing to the
assumption of infinite electrical conductivity (¥ = 0);
is the velocity of the coordinate surfaces s = const.

Ly

The differential equation for this velocity wg 1is not
completely solved, i.e. with allowance for radial 1inertia,
in all the calculations made because the necessary solution
method is very time consuming. For many cases this radial
dynamics 1is ignored, 1i.e.  the radial plasma motion is
treated as quasi-equilibrium; physically, this means that
the radial oscillations are damped infinitely fast.

As the heat fluxes perpendicular to the magnetic field are




small compared with the heat fluxes parallel to the field
lines, only the z-components are taken into account. The
magnetic field on the coil sur face was given by
experimentally determined values B(t).

The initial condition for the problem is an already
compressed plasma which is homogeneous in the z-direction;
this plasma 1is given by the radial profiles of n(r),
kT€(r), kT(r), kT4%(r) and the value of B(t ), radial
equilibrium being assumed; it 1is also assumed that
vz{t=t,) = 0 (and wc(t,) = 0).

The following boundary conditions were chosen:

a) For the magnetic field it 1is assumed that the <coil
surface is a flux tube; at the end of the coil B is
continued periodically, i.e. in terms of the coordinate

system: R
=0
7 e

b) For the dynamic quantities Y: {¢, va, p°, P., p. J and the
heat fluxes Y: (S;, S¥, s%J boundary conditions were chosen
which allow free outflow into the vacuum; in mathematical
terms, this means linear extrapolation:

ot ¥’
=0
(DZZ /z:L

This system of coupled partial differential equations is
numerically solved by difference methods. The convergence
of the numerical solution with the exact solution is
generally given by the Lax-Richtmyer theorem, which states:
"if the problem is consistently formulated, i.e. if the
approximation 1is equivalent owing to finite differences of
the differential equation, stability of the difference

method is a necessary and sufficient condition for
convergence"™ /26/. A detailed description of the
transformation of the differential equations, the

formulation of the initial boundary value problem, and its
numerical solution will appear in a separate report /27/.

2.3 Additional equations_for impurities

The impurities added to the deuteron plasma are generally
described by a system of equations 1like that described
above. These equations, however, are not treated in such a
general vay as the rest of the plasma; the impurities are to
be heated only by radial adiabatic compression and interact
with the plasma through binary collisions. It is assunmed,
moreover, that the impurities have the same macroscopic
velocity V as the electrons and ions. This simplifies the
description of the impurities, which can thus be
characterized by three egquations for the quantities 93,

Ly §
RZes P 5gi 30



The differential equations are of the form:

’D N <
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Here DIVW is the coordinate term describing the adiabatic
compression, The collision terms on the RHS of the
equations are again taken from Chodura-Pohl /23/; the
corresponding interaction terms have to ke added to the
equations for the electron pressure (Eg. (3)) and for the
two ion pressure components {(Egs. (4), (5)).

2.4 Testing of the model

The correctness and quality of the model were tested in a
series of comparisons with analytical and simple numerical
models. The result of the 2D calculation for a plasma
homogeneous in the r-direction and without end 1losses and
relaxation vas compared with analytical results for
adiabatic compression. Figure 1 plots for a certain
magnetic field vprofile B{(t) (dashed <curve) the values
calculated in the 2D code for the density n(t), electron
temperature kT “ (t), and the perpendicular component of the

ions kT {t) {solid curves) versus tinme. The corresponding
analytically determined values (©, x, 4) are denoted Gty
points. As the figure shows, the results of the 2D

calculation agree with the analytical predictions according
to

An(t) ~ AB(Y)
AKT?(t) ~ (_dB(t))%
AKTS(t) = 0
AKTL(t) ~ AB(t)
with an accuracy of about 1 % . This 1is a satisfactory
approximation of the analytical formulae by the numerical

calculation. The parallel component of the ion temperature
remains exactly constant; this is not shown in the figure.
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Fig. 1 Comparison of 2D code with analytic results
for the adiabatic compression (2D code with-
out relaxation and end losses).

The description of the anisotropy and primarily of the
relaxation was checked by comparison with simple numerical
calculations of Lehner, FNeuhauser, and Pohl /28/ . The
curves given by Lehner-pPohl in /29/ for the relaxation of
heavy 1impurity ions in an anisotropic deuteron plasma were
compared with results of the 2D code (without compression
and end losses). The curves given by Lehner-Pohl in /29/
for the relaxation of heavy impurity ions in an anisotropic
deuteron plasma were compared with results of the 2D code
{without compression and end losses). The results of this
comparison 1is shown in Fig. 2. The so0lid curves show the
results of the 2D code; the values of Lehner-Pohl are
denoted by points ({0,®,A,A Xx), This comparison, too, is
completely satisfactory. 1In a certain sense this is also a
comparative test of the coefficients given by Lehner /25/
and those by Chodura/Pohl /23/ for the relaxation of the
anisotropy and temperature. The two formulations differ
appreciably but yield the same results, as the test shows.
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kT + 0,9,A,A.X [29]
o 2D Code

800+

600-
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e

0 02 04 06 tIps)

Fig. 2 Comparison of 2D code, with respect to relax-
ation of temperature and anisotropy (of heavy
impurity ions as well), with results of Lehner-Pohl.

The axial behaviour of the 2D programme (one-fluid model
without thermal conduction) was compared with results of
J.Wesson /30,7 . According to Wesson's theory the velocity
of the rarefaction wave due to the end losses is egqual to
the sound velocity times ﬂ1 - A . This result of Wesson
was checked with the 2D <code for every flux tube and
satisfactory agreement was obtained. Wesson's model treats
a radial box-shaped profile; the comparison should therefore
be correct for every single flux tube. In Fig. 3 the
velocity vgis plotted for fixed z and t versus the radius.
Here the velocities V;of the rarefaction wave observed in
the 2D calculations were plotted for various flux tubes.
The agreement is satisfactory.
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v
(cm/psl \P
0 ° o—o—v—°
Y, Fig. 3 Comparison of
—Vs =cs/1-B phase velocities
of the rarefaction wave
o5 OVP(ZDCode) calculated from Wesson's
SJ AN 05 formula (solid curve) and
\ ' the corresponding veloci-
\ ties Vp observed in tie
AN 2D code (©);: in additiou,
\\\ B o beta is plotted (dashed).
00 1 rfcm]

In this connection the influence of the step size Az was
investigated more closely, i.e. the question is how small
Az has to be chosen to come as close as possible in
practice to the approximation Az —> 0 . As these
velocities Vp of the rarefaction wave are numerically the
most difficult to obtain to a high level of accuracy, and
hence depend strongly on the step size, it was these
quantities that were used for a convergence test.

Vo b
[cm/psl]
20+

10 Fig. 4 Convergence of
the phase veloci-
pt ties of the rarefaction
Vp (r=0) wave in the 2D code.
0 T T —
0 5 10 azlcml

Figure 4 shows the convergence of these vave velocities as
observed on the density on the axis V" (r=0), the density at
the plasma boundary V {r=Rg), and from the line density
Vi se N1Eh,a . step size of ~z&2 cm, which is roughly
equivalent to fifty mesh points over a length of 100 cm in
the z-direction, the approximation is already qulte good for
these velocities. The convergence shown 1is in agreement
with the Lax-Richtmyer theorem /26/ because the numerical
methods for solving the problem yielded stakility.
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For the model treated here infinite conductivity is assumed
(7 =0) (Sec. 2.1, i.e. the ohmic heating of the electrons
is neglected. It can be estimated that the contribution of
the ohmic heating ( » j*) to the total energy of the plasma
in the quasi-stationary phases is small owing to the high
temperature. By way of substantiation a 1D radial MHD model
of H. Fisser ,10/ was used. This programme allows for ohmic
heating, but is only applicable to a plasma of infinite
extent 1in the z-direction. Measured values (ISAR II and
ISAR I) of density  profiles n{r) and of homogeneous
temperatures (kT?, kT:, kT,) were used as initial conditions
at a time after the first fast compression. The results of
the 2D programme (without end losses) for the same initial
conditions were compared with the results of the 1D
calculation (Figs. 5, 6 and 7).

ISAR I 20mTorr ISAR II 80 mTorr
kT® n® "n
(10%V). [110%em) tem)
A T
KT
—2Drz iy
oxalDTr x KT® nt —2Drz -
3 - 00%V) (108 ) e.xa1Dr tcTJ
6-4

. : —10
0 1 2 3 tlps) 0

Pig. 5,6 Comparison between 1D(r) code and 2D{r,2z)

code with reference to electron temperature
and density and to the half-radius of the density
profiles (ISAR II, 20 and 80 mTorr D, ).

In each <case the electron temperature kT® and electron
density n in the centre of the coil and the half-widths r,
of the radial density profiles in the midplane of the
discharge vessel are plotted. For clarity, only the results
of the 2D code were plotted in curve form, the results of
the 1D programme being plotted for individual times only.
The reason why the results of the 1D calculation do not
always coincide with those of the 2D calculation is that the
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1D programme makes full allowance for the radial 1inertia,
i.e. it oscillates about the equilibrium. This is indicated
in a few figures for one time interval. The 2D programnme
was used here on the assumption of quasi-equilibrium, 1i.e.
these radial oscillations wvere damped. As the figures
confirm, the different descriptions of the radial behaviour
in the two codes (1Dr: # > 0; 2Drz: 4/ = 0) lead to the sanme
results, i.e. the ohmic heating is negligible relative to
the adiabatic compression.

ISAR 1 40kV, 6/6

e —2Drz
né kT TRY firs
15 -3 2 ik
(10°cm”) [10%eV] [cm]
0} !
-15
5_
-1
0.5
0 T T 0
0 5 10 tlps]

Fig. 7 Comparison between 1D{r) code and 2D (r,z)

code with reference to electron temperature
and density and to the half-radius of the density
profiles (ISAR TI; 5.40 m coil).

since, on the other hand, the agreement betwveen experiment
and calculation is satisfactory, as is shown in Chapter 3,
it can be concluded that nor do anomalous resistive heating
or anomalous diffusion occur. It has already Leen shown
/7/, 7317 that the plasma in the quasi-stationary phases can
be described in terms of classical electrical conductivity,
and that no anomaly is observed. In the cases discussed
here, however, the classical ohmic heating is so small owing
to the high temperatures that it can be neglected relative
to the magnetic field compression.
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3. Comparison_between Experiment and Model

3.1 Measuring_methods

The experiments were carried out on the ISAR II 500 kJoule
linear theta pinch bank with a double-fed coil of 1 m length
and 10 cm in diameter. The plasma diameter was about 2 cm
in the late phases. Typical discharge conditions were at
25 kV charging voltage: B = 3x10° Gauss/sec and a maximum
field B = 52 kGauss. The measurements used for comparison
were concentrated on two filling pressures of 20 and 80
mTorr deuterium /32/ . The low filling pressure guaranteed
high anisotropic ion temperatures and rather slow relaxation
of particle energies, while the higher filling pressure
served for a discussion of a faster relaxing and more
isotropic plasma. The electron density was determined from
side-on radially resolved measurements of the emission
coefficients of the free-free continuum radiation around
5300 X and from end-on Mach-Zehnder interferometer
measurements in the visible. The electron temperature on
the axis was obtained from 90° laser light scattering.

The diamagnetic flux, which yields essentially the 1ion
energy within the plasma, wvas measured with suitably
arranged loops /33/. The test signal y& gives directly the
flux displaced by the plasma:z

A

This displaced flux is related to the total flux in the coil
without plasma as follows:

ad = 2 &%

73
21"f( B, - B,(r) ) r dr .

amc R T

(Bo is the magnetic field outside the plasma, B;(r) is the
magnetic field within the plasma, Rg is the plasma radius,
and Re is the coil radius). Under the assumption of radial
equilibrium and knowledge of the line density N =
27 {n{r) r ar it is possible to obtain the perpendicular
energy of the plasma from the diamagnetic signal:

e, Lo 0 s A

From this data and the known electron temperature kKT # the
perpendicular ion energy can be calculated.

A scintillator together with a multiplier -absolutely
calibrated with a silver counter- allowed the neutron flux
rate to be measured. What is measured here is the total
number of neutrons per unit time that are emitted in the D-D
reaction DEFLD diiHegin+tp . The cross section for

this reaction is a function of the mean ion energy (for
various energy distribution functions of the ions). The
mean ion energy can thus be determined from the neutron flux
in conjunction with the density distribution.
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3.2 Comparison of the experimentally determined plasma
parameters with results of the model

These measurements were compared with the two-dimensional
calculations started at t, = 0.75 Asec with experimental
data. To be more precise, the initial conditions for the
computer code were the experimentally determined radial
density profile n(r,t,) and the electron temperature
measured in the «coil <centre kT®(t,) together with the
measured vacuum magnetic field B(t,). The perpendicular ion
temperature kT;(t,) was estimated from the diamagnetic
signal, and the parallel ion temperature kT, (t,) was assumed

to be approximately equal to the electron temperature. All
temperatures were assumed to be uniform over the radius at
time t = t_; furthermore, the initial conditions were

homogeneous in the axial direction; the velocityv V(t_,) was
set equal to zero.

Fig. 8 shows a comparison between the solutions of the
computer programme (represented in curve form) and the

ISARI 20m Torr

né “ kTe I Ad
[10® cm31 [ [102ev] [%]
3+ |, -3
//|/ }\\\
X\\He
o X Lo
\l o ne
1T l\\\\A~"‘:i-—-——-——§A¢ B
0 T 1 T 1 0
0 1 2 3 t [ps]

Fig. 8 Comparison of the measured electron tempera-

ture (X ), electron density (©), and dia-
magnetic signal (4A) vith results of the 2D code
(curves) in the 20 mTorr case.
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corresponding measured values (represented as x, o, 4,
namely the electron temperature kT%, the electron density n
on the axis, and the diamagnetic signal at the midplane as a
function of time for a filling pressure of 20 mTorr. In
Fig. 9 the same quantities are compared for the 80 mTorr
case. The calculated values agree well within the margins
of error.

ISAR II 80mTorr

ne kT® i
10" cm31 [10%eV] [%)

6+ -6
o oNo_ o
5 ° ° o

>4
—O—
N
o
3
®

’ ad

0 1 2 3 tlps]

Fig. 9 <Comparison of the measured electron tempera-

ture {x), electron density (o), and dia-
magnetic signal (&) with results of the 2D code
{curves) in the 80 mTorr case.

Besides these quantities calculated directly in the
programme, such secondary quantities as the plasma beta

= p/(B%/87) the line density N, and the half-width of
the radial density profiles in the midplane of the coil were
compared. The comparison between calculation and
measurement for the line density and half-radius are shown
in PFig. 10 for the 20 mTorr case and in Fig. 11 for the 80
mTorr case, The various test points for the 1line density
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originate from different evaluation methods: firstly, N was
determined from the total particle number N ,; divided by
the length of the plasma (symbol o ); the other test points
(x) derive from the evaluation of the continuum radiation.

ISAR II 20 mTorr
ISARII 80 mTorr

N x aus Kontinuum
(10%em") o aus Ny /L v2 N
| [em] s nr
—Fiilldichte } ¢ o tem)
o o 1
X )
6 ) o
° 31 Fiilldichte -3

) o

0 1 2 3 trps) 0 1 2 3 trps)

Fig. 10,11 Comparison of the calculated density and half-
radius of the density profile with the mea-
sured values (20 and 80 mTorr D,).

As the ion temperature could not be measured directly, the
measured neutron fluxes were compared with those calculated
in the programme; for this purpose the 1local neutron flux
rate

R =172 n*<69>

was integrated over the entiaf plasma column:
& R
N (t) = 21 f f‘R(r,z,t) r dr 4z
-4 o

This comparison is shown in Fig. 12. The agreement tetween
measurement and calculation is again satisfactory,
particularly if it is borne in mind that the D-D reaction
cross section /34/

-12. -2 &
<63>=1.3x 10 T /s exp (-187.6 T (’)

{vhere T [ev] = 1/3 T, + 2/3 T5) is a steep function of
temperature for deuterons of a few keV.
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Fig. 12 Comparison between measurement and calculation
for the neutron fluxes {A experimental points;
the curves shov the results of the 2D code).

At this point some remark should be made about the
comparison of the calculated radial density profiles and
those determined from continuum measurements. In many cases
ro agreement could ke achieved with these density profiles.
Only when the <calculations were started with narrower
profiles (narrower than the observed ones) was agreement
obtained for later times. The suspicion that the continuum
measurements at early times often yield profiles that are
too wide is supported by other observations. For example,
laser measurements of the density profiles at these early
times yield smaller half-widths than the continuum
measurements; however, the accuracy of these measurements is
not yet high enough to allow a definite conclusion,




20

3.3 Determination of the temperatures of impurity ions
from the Doppler broadening of spectral lines

The data compared so far do not reliably tell whether the
description of the relaxation of anisotropic ions and the
axial flow is descrited correctly. In order to check this,
carbon and oxygen impurities were added and the line
profiles of the CV 2271 R line and the OVII 1623 & line,
both helium-like triplet transitions, were measured end-on
and side-on.

The Doppler broadening of spectral 1lines 1is not only a
consequence of the random velocity distribution (i.e. of the
temperature), but also of the directed (macroscopic)
velocities, €.g. plasma flow. When such macroscopic
velocities V occur, the relation between a Doppler broadened
line and the temperature of the line emitting ions 1is  more
complicated. If Corona equilibrium is assumed, the
excitation probability can be eliminated from the (integral)
emission coefficient £ | The wavelength dependence of a
Doppler broadened line is described in the usual way /35, by

o (- [224])

If there is a directed macroscopic velocity V present, A,
is no longer constant, but is a function of this velocity,
namely

!
1°=l°(1--\’c-);

the Doppler wavelength p is
24677 X\
>3= wSe? ) ‘
Integration over the emission coefficient € ( A,r,z) in the
direction of observation yields the intensity in optically
thin media. The radiation power per solid angle P(7)

recorded by the monochromator is finally obtained by further
integration over the surface:

e &
P (X)) = 27:/( f E4inea) cdz3) c£.dE -,
e -z

This yields the 1/e width of the end-on Doppler profile
and also a formal (apparent) "Doppler temperature”:

e .2
s _m-c AX\2
<kT4 >.Doff/¢l - 5 ( a:’ ) °

For the comparison with the experimental values of the
perpendicular temperature obtained from side-on observation
of the radial Doppler profiles one really ought to use the




same formalism, Since, however, the radial macroscopic
velocities are negligible relative to the thermal
velocities, it is possible to «calculate the observable
perpendicular temperature by being averaged over the radius:

§)2 675
< _3‘) ((h) ,_" r
kT, ___;7;5t;-

(This is valid only after the radial compression
oscillations have been sufficiently damped.)

Besides this influence of the macroscopic velocities on the
Doppler broadening of spectral 1lines, the decay of the
relevant ionization stage was also approximately taken 1into
account; the ionization of C V to C VI is described by

P S s e

e —_ e n

b n n X
where the rate coefficient X is given by Kunze et al. /36/
as

La. 1 tre \t £, E
X = 17 e 2 ( ) exp ( = e
me (142) £, E+bie I35
4% - Y
7&; = 6.14 x 10 7 cm !/sec
W 13.6 eV
E'(CV) = 392 eV <E,(OVII) = 739 eV>

This space and time dependent variation of the impurity
concentration 1is essential for the intensity of the emitted
line. As the impurity ions are further 1ionized faster in
the hotter, denser regions of the <coil centre, the end
regions with higher axial velocities have greater weight in
the integration of the emission coefficient <.

The comparison of the measurements with the temperatures
calculated in this way is shown in the next figqures (Figs.
13, 14, and 15).

Interpretation:

The solid curves in Fig. 13 represent the perpendicular and
parallel temperatures, determined by integrating the
differential equations - H(10%:,2 2 LETT). . 2taind ¢ () 2)F7* Shiols £ et he
impurities in the centre of the coil as functions of tinme.
The dotted lines are the corresponding temperatures
calculated from Doppler-profiles within the code; i.e. these
quantities (especially the axial one) represent both thermal
and flow velocities. For comparison, the perpendicular (o)
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and parallel (&) "temperatures" obtained from end-on and
side-on measurements of the Doppler profiles are also
plotted. The measured and calculated axial "TCoppler
temperatures" agree very well in this 80 mTorr case and
differ <clearly from the actual parallel temperature
kT§(r=0,2z=0). This difference is due to the influence of
the axial plasma velocity distribution on the Coppler
broadening observable end-on, and hence to an apparent
"Doppler temperature" <kT‘})Aw‘U. The contribution of this
velocity to the Doppler broadening is at times a factor of
4 - 5 as large as that of the parallel temperature itself.

ISAR I 80mTorr 2% CX

KTEE [eV)
g

4 N c
1000 _ [’ <kT">Doppler
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_ [ H 4 kTS end on
% / . o kTS side on
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0 ] 2 3 tlps]

Fig. 13 Calculated actual perpendicular and parallel

temperatures of impurities in the coil centre
(solid curves) and comparison of appareat temperatures
determined from Doppler profiles observed end-on (A)
and side-on (O ) with temperatures<kT calculated fronm
actual temperatures and flow velocity (dashed curves).
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Fig. 14 Calculated actual perpendicular and parallel

temperatures of impurities in the coil centre
(solid curves) and comparison of apparent temperatures
determined from Doppler profiles observed end-on (A)
and side-on (0) with temperatures<kT® calculated fron
actual temperatures and flow velocity (dashed curves).

In the 20 mTorr case (Fig. 14) the parallel temperature and
the temperature obtained by Doppler broadening differ by a
factor of 2% The agreement between measurement and
calculation as regards the apparent parallel temperature is
not so optimum as in the higher density case because
microscopic instabilities, viz. mirror instabilities, are
present and cause additional relaxation /40/. 1In Fig. 15
the influence of this additional relaxation on the parallel
temperature of O VII is even more pronounced.
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Fig. 15 Calculated actual perpendicular and parallel
temperatures of impurities in the coil centre
(solid curves) and comparison of apparent temperatures
determined from Doppler profiles observed end-on (A)
with temperature <kT:> calculated from the actual
temperature and flow velocity (dashed curve).

It has thus been convincingly demonstrated that measurement
of the parallel temperature of the impurities by end-on
observation of the Doppler profiles without taking into
account the axial plasma flow may lead to wrong results.
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3.4 Result of the comparison

In Chapter 2 it was shown that the computer experiment used
here yields the same results as analytical formulae or
simple numerical models. In a certain sense this was a
comparison with theoretical predictions, i.e. relating the
2D code to other plasma models.

The comparison of all quantities measured in the experiment
with the <corresponding results of the computer code showed
such good agreement (Chapter 3) that the 2D programme can
now be related to actual experiments: the computer
experiment describes the phenomena in the theta pinch
correctly. Furthermore, it has been demonstrated
particularly in Section 3,3, that the computer experiment is
a useful aid for interpreting measurements.
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Fig. 16 Temperatures in coil centre obtained in 2D
calculation {filling pressure 20 mTorr T,).

Finally, the calculations yield the temperatures of all
partners; see Figs. 16 and 17 (wvhere the temperatures in the
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coil centre are plotted as functions of time). These two
plots clearly show the different relaxation behaviour in the

different parameter regions of 20 and 80 mTorr filling
pressure.

ISARII 80mTorr 2% CX

kT
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|
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- Fig. 17 Temperatures in coil centre obtained in 2D
calculation (filling pressure 80 mTorr D,).

Some comment should be made about the relaxation of the
impurities: Bogen et al., 37/ determined the deuteron
energies from measurements of the Doppler broadening of
impurity lines. As Fig. 16 shows, hovever, the temperatures
of all partners are generally different. This result was
also obtained by Lehner and Pohl /29/. Only in cases of
high density and relatively lowv temperatures can equality of
the temperatures of deuterons and impurities be assumed (see

Fig. 17).



4. Discussion_of the Energy Balance

4.1 Energy balance: computation of experimentally
inaccessible_quantities

Once satisfactory agreement had been obtained by comparing
all experimentally acessible plasma parameters with those
calculated in the computer programme it was safe to discuss
the data of the code without direct relation to experimental
measurements. This included a detailed enerqgy balance, i.e.
a discussion of the individuval energy components in the
plasma (kinetic and thermal energy) and the various energy
losses at the end of the coil (kinetic energy losses, energy
loss by convection and thermal conduction) compared with the
enerqgy gain due to adiabatic compression.

The energy balance follows from the continuity equation, the

equation of motion and the pressure equations and is written
in integral form as follows:

A 22
2/7[ f [%?v2+
o [}

s 1B g :
"”f f[ﬁ%"*zpﬂ*—f'pq*pnv+

? 2 5 ;4, A‘..L
7St 3S,¢ se]r dr dt +

2/

Nty

T BT <
P +5P, * leﬁf r dr dz +
RS |

+

{' Ee Z

. 2n[ / /[(pei»pi) DIVH +
f’ ° o

+ (pi-pi) v GZ ] r dr dz d&¢ = E_ .

o

L Eg
2 e )
E, := ZWJA/[ZQ‘;V +§p‘+£p“+pl]f{rdrdz

is the total energy of +the plasma at the start of the
calculation (t= t,). The first integral gives the total
energy E of the plasma in the coil at the time t,. The
second integral gives the total energy losses AE at the
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end up to the time t,. The first part of the third integral
represents the energy gain of the plasma due to adiabatic
compression and is referred to in the following as AEp.
The second part of this integral is interpreted as the work
required to change the curvature of the field 1lines. This
energy component was so small in all the cases investigated
that it will not be considered further in the following.

The total energy loss AE was normalized to the energy
E®:= E ¢+ AFE, i.e. the energy that the plasma would have if
not subject to end losses. It was thus possible to make a
direct comparison of these normalized end losses
Ae =AE/E™ for various cases.

The energy conservation was also checked:
SE 2= IE(t=t,) + AEg - E*I/ ¥,

Along with the corresponding symbol §m for the nmass
conservation, this is a measure of the quality of the
computation, In all of them the mass conservation was
Sm < 1%; the characteristic values of §fe were between 3
and 5% . Not only were the various components of the energy
in the plasma E := Exy + Ep calculated seperately, but also
the various components of the energy loss AE :=
ABky +A4Ep  +4E¢ and the energy gain of the plasma due to
compression of the magnetic field AEg . The energy terms
for every plasma component (electrons, ions perpendicular
and parallel) were almost all calculated separately; and,
finally, the energies that are transferred from one
component to the other as a result of relaxation are
integrated. This yields a vast amount of data, and so here
only a few aspects can be singled out for attention.

4.2 Analysis of the enerqy balance:
convection as_the dominant loss mechanism

The various energy components cannot readily be measured in
a conventional experiment. Furthermore, the computer
experiment can quantitatively determine the influence of
certain effects ,e.g. thermal conduction, in the form of
energy components,

In the following it is attempted to represent the individual
energy components from various viewpoints. The two cases of
20 and 80 mTorr filling pressure in ISAR II are taken as a
basis.

To give an overall picture, first the total energies for the
two filling pressures are plotted in Fig. 18. Then the
energy gain of the plasma due to magnetic field compression
is compared in the two cases {(Pig. 19). The splitting of
this energy gain and of the internal energy into the various
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fluid components is represented (Figs. 19 and 20). Finally,
the various mechanisms composing the energy losses are
discussed (Figs. 21 and 22).

a) Total energies:

In Fig. 18 the total energy of the plasma (E) and the total
enerqy losses (AF) at the end of the coil are plotted for
the tvo filling pressures (these values are valid absolutely
for half the coil in each case). Also plotted 1is the
virtual plasma energy (E¥), i.e. the energy which the plasma
would have in a coil without end losses.

ISAR I 20 mTorr ISARII 80mTorr
E E
[kJoulel [kJoulel
)
1.51 154
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0 T T ; Ll SR c T B § T T e
0 1 2 3 tlps] 0 1 2 3 tlps]

Fig. 18 Total energy in the plasma E, total energy
losses AE, and sum of the two energies E¥

b) Energy gain of the individual fluid components:

The adiabatic heating by compression due to the magnetic
field was plotted for ions and electrons in PFig. 19. The
starting point in each case was the energy component at the
time t,= 0.75 4sec. For reference the time variation of
the external field B(t) is also plotted (dashed curve). At
the filling pressure of 80 mTorr the energy gain of the
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plasma is higher than in the 20 mTorr case. In the low
pressure case the perpendicular component contains the bulk
of the enerqgy (compared with the other components). The
parallel ion component does not undergo any change as a
result of adiabatic compression in either case.

B ISART 20 mTorr i B ISAR TI 80 mTorr g
[kJoule) LkGauss] [kJoule) [kGauss)
A [ |

Eg
].5" 15-4

H00 1.0

50 051

0 1 2 3 tips) 4

Fig. 19 Energy gain of the individual plasma compo-
nents due to adiabatic compression; in ad-
dition, the time variation of the external field B (t)

c) Enerqgy of the individual fluid components:

The contributions of the various fluid components to the
energy of the plasma are shown in PFig. 20. All energies
here are normalized to the virtual energy E*:= E + AE . 1In
the 20 mTorr case the perpendicular component of the
deuterons contains the bulk of the energy. This energy
dissipates only slightly into the other degrees of freedonm
of the ions and transfers enerqy to the electrons very
slowly, 1i.,e, the relaxation 1is weak (see also Fig. 16).
With a filling pressure of 80 mTorr, on the other hand, i.e.
with stronger relaxation (see Fig. 17), the energies of the
various components equalize much faster.
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Fig. 20 Energy of the electrons and of the two com-
ponents of the deuterons, in each case nor-
malized to the virtual total energy of the plasma.

d) Energy losses classified according to the loss mechanism:

The contribution of the various processes to the energy loss
are quantitatively analyzed by plotting the energy losses
due to kinetic energy AE,. , convection {pressure transport)
AEp , and thermal conduction AEp in Pig., 21 for the 80
mTorr case. Also shown are the sum of all energy losses AE
and, for comparison, the energy gain due to adiabatic
compression AEg . Again, all energies are normalized to
E¥:= E + AE , The main contribution to the energy losses
at the ends is made by convection. The energy losses due to
thermal conduction (through the end planes) are much
smaller. The diagram on the left side of the figure showvs
the energy balance of the <calcunlation without thermal
conduction (X = 0). The end points of these curves are
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marked in the right-hand diagranm. The convection losses
thus increase when thermal conduction is cut off, and so the
total energy 1losses 1in the two cases do not essentially
differ.

ISART 80mTorr
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Fig. 21 Energy gain of the plasma due to adiatatic
compression AEg and various energy losses

AE for the case without (X = 0) and with (& > 0)

thermal conduction (80 mTorr filling pressure).

This behaviour also occurred qualitatively for the high
temperature <case, 1i.,e., thermal conduction has a stronger
bearing. Fig. 22 shows the same energies for the 20 mTorr
case, the temperatures here being much higher.

The conclusion that the bulk of the energy losses at the end
of the «coil 1is not due to thermal «conduction but to
convection contradicts the results of other investigations
/38/. The relation eLtetween end losses and temperature in
the coil centre is discussed in section 4.3 . The diagram
on the right-hand side of Fig. 22 also shows the estimated
radiation losses. The scale for this curve is a factor of
10 as large as that for the other losses. This estimate



justifies 1ignoring the radiation losses in the energy
balance in the cases discussed here.
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Fig. 22 Energy gain of the plasma due to adiatatic
compression AEz and various enerqgy losses

AE for the case without ({ ¥ = 0) and with (X > 0)

thermal conduction (20 mTorr filling pressure).

4.3 Influence of heat conduction on the axial dynamics

As has already been discussed in connection with the energy
balance, thermal conduction plays only a minor part in the
direct energy loss at the end. As regards the energy
transport inside the coil, however, thermal conduction is of
major importance., Owing to the partially very fast thermal
diffusion the plasma in the centre of the coil senses the
lower temperatures at the end long before the rarefaction
wave coming from the end reaches the coil centre. In order
to illustrate this effect, the programme was used for the
same parameters, once with thermal conduction, then without
thermal conduction (X = 0), and finally for a plasma of
infinite extent (L = o0) . The electron temperatures in the
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centre of the coil are plotted versus time in Fig. 23. The

corresponding experimental values for the electron
temperature are also included in this Figure for
comparison. In addition, the electron temperatures

resulting from a further variation of % , namely X*= (0.3
or 3)x X , are plotted.
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Fig. 23 Time evolution of the electrom temperature
in the coil centre for various thermal con-

ductivity coefficients ( X*=10, (0.3, 1, 3) x X))

and infinitely long coil (L =) &

{ & measured values).

The much discussed question whether the coeffients used for
the thermal conduction correctly describe the thermal fluxes
in the ©plasma <can only be answered positively within
limits., The experimental accuracy does not allow any more



precise information than that the coefficient of the thermal

conductivity of the electrons is correct to a factor of 2 -
3'

4.4 General remarks_on_the energy loss mechanisms

The three loss mechanisms at the end of a theta pinch coil,
ViZ. kinetic energy transport, pressure transport
(convection), and thermal diffusion (thermal conduction),
cannot Lke related by a simple analytic expression. For
certain limiting cases, however, it is possible to arrive at
useful formulae, whose range of validity will be discussed
briefly here. The model of Wesson /30, for adiabatic plasma
losses gives the velocity with which the rarefaction wave
travels from the end to the 1inside of the «coil. The
agreement bhetween the model presented here and that of
Wesson has already been discussed in_ Section 2.4, As was
shown there, the relation v = c |1 - (@ is valid not only
for a radial box-shaped profile, but also for any flux
tube, The Wesson model, however, is only valid as long as
thermal conduction does not exert any appreciable influence
on the dynamics in the z-direction. But in these cases the
formula of Wesson affords a good estimate of the time taken
by the rarefaction wave from the end to the centre of the
coil. There is no analytic formula for the total energy
losses at the end. Since, however, the temperatures in the
centre of the coil are related to the losses at the end, the
model of Green et al. /38/ 1is discussed briefly. The
essential result of this simple model calculation is to
determine the maximum attainatle electron temperature in the
centre of the coil. This model is only valid for isotropic
plasma with equal electron and ion temperatures; allowance
is made only for the thermal conduction as loss mechanism
and adiabatic heating as energy input. The maximum electron
temperatures predicted by this model were compared with a
number of results obtained with the 2D code. Although it
was demonstrated here that convection is mainly responsitle
for the enerqgy losses at the end of the coil, the
predictions of Green et al. agree with the 2D calculations,
but only within about 30% . Surprisingly, there was even
rough agreement for anisotropic plasma. This result may
justify using Green's formula to obtain an estimate which
may be useful at least as a basis for discussion.

4.5 Anisotropy_relaxation - mirror instabilities

The calculations had not been compared hitherto with direct
measurements of the perpendicular and parallel components of
the deuterons because such measurements were not possitle in
the ISAR II experiments., In ISAR I, however, J.Neuhauser
/39/ has conducted extensive investigations on the ion
energy. The experiments on ISAR I were therefore enlisted

E 00




in this special connection. Figure 24 shows a comparison of
the measured ion energies with the corresponding
calculations., When the <classical relaxation coefficients
/237 were used, the calculation (dashed curves) yielded
slower relaxation than the experiment. The diamagnetic
signal in the bottom diagram also shows a corresponding
discrepancy between measurement and calculation (again the
dashed curve). As already 1intimated in Section 3.3, the
faster relaxation in these parameter ranges can be ascribed
to the presence of mirror instabilities /40/.
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0 5 10 15 20 tlpsl

Fig. 24 Perpendicular and parallel temperatures of the

deuterons and diamagnetic signal. The solid
curves were calculated with additional relaxation
{(mirror instabilities), the dashed curves with normal
relaxation (binary collisions only).
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After an additional phenomenological relaxation ( 72; -
relaxation time of the anisotropic ions)

1080 =al/E0)  woVLf;

£ aa 1ty (classical: binary collisions)

]

e . =1,
£ 5x1oé(kfr1[ev])/‘
had been included, the temperatures and the diamagnetic
signal which are represented in Fig. 24 by solid curves were
obtained. The calcualtion has thus been shown to be in
satisfactory agreement with the measurement as regards these
parameters. Figure 25 shows that the good agreement of the
other plasma parameters is ensured by this treatment of the
model.

ISAR I 40kV 6/6
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Fig. 25 Comparison of the measured electron tempera-

ture kT®( x ), electron density n®( © ), and
diamagnetic signal Ag ( A ) with results of the 2D
code (curves).
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The calculations for ISAR II (filling pressure 20 mTorr)
were then made with this additional relaxation. The results
for the impurity temperatures (CV and OVII) are shown in
Figs. 26 and 27. It 1is true that the <calculation and
measurement are still not in optimum agreement, but compared
with the corresponding Figs. 14 and 15 there is an oktvious
approximation of the calculated results to the temperatures
actually present.
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Fig. 26 Calculated actual perpendicular and parallel

temperatures of impurities in the coil centre
{solid curves) and comparison of apparent temperatures
determined from Doppler profiles otserved end-on (A)
and side-on (©0) with temperatures<kT® calculated from
the actual temperatures and flow velocity (dashed
curve). These calculations are made with an additional
phenomenological relaxation.
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Fig. 27 Calculated actual perpendicular and parallel
temperatures of impurities in the coil centre
{solid curves) and comparison of apparent temperatures
determined from Doppler profiles observed end-on {(A4)
with temperature <kT°> calculated from the actual
temperature and flov velocity {dashed curve).
These calculations are made with an additional
phenomenological relaxation.

In all other cases in which these mirror ianstabilities did
not occur the relaxation was correctly described by the

coefficients given /23/. This 1is 1in agreement with the
result of the investigations conducted by Andelfinger et al.
/41/.

For the limiting case of weak anisotropy the formulae of
Chodura-pPohl 23/ are simplified; the resulting relaxation

- TeE
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times agree to within a numerical factor with the
equipartition times (two temperatures) of Spitzer /5/ :

2 2 m /m")’/‘ (/ZTQ)%

?‘e' - —— pose——
' 1% Ky me et n b N
R K (mi) (7%
R et n L\

(These  formulae are obtained from the coefficients /23, for
(1 - Ti/T,) << 1; they are valid for simply ionized
particles; 1ln 1is the Coulomb logarithm.) Accordingly, the
relaxation times in ISAR II at a filling pressure of 80
mTorr are

12.

o

4.2 /sec
T = 0.0 /A sec

These values satisfactorily characterize the temperature
behaviour represented in Fig. 17.

5. Conclusions

A computer experiment such as was presented here bty means of
the results of a 2D MHD programme for theta pinch discharges
is a useful tool for interpreting physical phenomena; it
also allows predictions about theta pinch experiments,

The essential results of the foregoing investigations, in
which measurements and calculations were in close
coordination, are briefly as follows:

1) The adiabatic compression is the dominant heating
mechanism in theta pinch discharges after the early
implosion phase; the contribution by ohmic heating in these
late phases can therefore be treated with the known
analytical formulae for adiabatic heating, this being of
importance for the otherwise complex investigations in
toroidal configurations.

2) The relaxation of the anisotropic ions, which are always

present 1in fast compression experiments, is properly
described by the coefficients of Chodura-Pohl /23/ or Lehner
/25/. In the 1limiting case of weak anisotropy these

coefficients transform to the formulae of Spitzer /5/ up to
a numerical factor, and so for rough estimates these
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somewvhat simpler formulae can be used in many cases. For
strong anisotropy, however, the more elaborate formulae
mentioned are recommended to be used. The coefficients
mentioned make allowance, however, only for binary

collisions and neglect collective phenomena; this means that
when microscopic instabilities are present, e.g. mirror
instabilities, which may give rise to additional relaxation,
the description used here is not sufficient.

3) The Doppler broadening of spectral lines of impurity ions
in a deunteron plasma can be measured with relative ease. As
has been shown here, however, the interpretation of this
Doppler broadening in terms of a temperature of the line
emitting ions is generally not correct. The contribution of
macroscopic velocities to Doppler broadening may under
certain conditions be larger than that of the random
velocity distribution, i.e. the temperature, itself.

Although obtained in investigations on linear
confiqurations, these three results are also valid for
toroidal configurations since boundary conditions are of
minor importance. The fourth result, however, applies
specifically to linear theta pinches and concerns the
influence of the various energy loss mechanisnms.

4) In theta pinch plasmas where thermal conduction is of
minor importance {i.e. the characteristic time scales of the
experiment ,are small compared with the thermal diffusion
time t = L/X , where L is the characteristic length of the
experiment, X the coefficient of thermal conductivity) the
rarefaction wave propagates from the end to the centre of
the coil with a velocity v = cs ( 1 -1?)“—/30/ . {Here the
the velocity of sound <¢s and the plasma beta (f are
functions of space and time.) For such plasmas this
analytic formulae 1is a useful tool for estimating the
arrival of the rarefaction wave at the centre of the coil.
In the case of plasmas whose dynamics are strongly affected
by thermal conduction the foregoing is, however, no 1longer
valid. A rough estimate of Green et al. /38/ that takes
into account only the energy 1losses due to thermal
conduction yields approximately the same maximum attainable
electron temperatures in the centre of the coil as the
relatively complex calculations used here. A detailed
enerqgy balance in the model described here showed that the
main part of the energy transport through the end plane of
the coil is due to convection, this being true in all the
cases investigated (i.e. irrespective of whether the thermal
diffusion times were small or 1large compared with the
discharge time). Tn high temperature plasmas the thermal
conduction 1is of prime importance for the energy transport
inside the coil; the result of this thermal diffusion is
that axial temperature profiles disappear fast and hence the
maximum temperatures in the centre of the coil may be
appreciably lowered under certain conditions.
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total pressure

magnetic field

current density

electric field

collision ternms
heat flux {(electrons)
heat flux (ions , )

heat flux {(ions , )

magnetic flux

plasma radius
coil radius

coil length



Pg

N = 2ﬁf}1r dr
(o]
‘ Pe
;/‘5.= 21 f(Bq- B.
[>)

A;z(= #S/Z B, RC‘L

[ cm’i] line density
) r dr diamagnetic signal

[ A ] displaced flux

N [ neutrons/sec ] neutron flux

{ cnm ] half-radius of n (r)

2 = (p€+pf)/(Bf/81) plasma beta

B external magnetic field

B (r) field within the plasnma

¢ emission coefficient

2: [ R ] vavelength of line radiation

X, = 1;( 1.=- Y/¢ ) Doppler shifted wavelength
7%

2%7, 121
e )

ws cZ

»

D=

Doppler wavelength

B k) [ Watt/sterad % ] radiation power

Energies:
e = Epgt Bp
{3 Bp

&)
]

energy within the plasma

4 2&

i ZTf[[%g vz]{ r dr dz = 2?[/[ g‘gevz+‘3g:vl] r dr dz
0 o "t © o
1

t=

1

Lﬁg
2 e ¢ 1 s
EP=2'£//—&—p+pJ+‘;p,(] r dr dz
t=1,

o o
- e c . B
B ™ Ewn v Eu kinetic energy

e ",.t "‘// .
Ex = Ep ¢ En + E 5 . 1internal energy




AE&R -

AE 5

AF ¢

AEbmf AEP + AEg

) Re

2Tt/_/[ (-gqvl) v]
t o v

4y

energy losses

r dr 4t

L

¢ 2
e : ¢
27 /[ (zgp + p1+-§p”) v] r dr dt
‘s 2=l
f e 3 e e A
s by “
27¢ff[&s%+sz+ SZJ r dr dt
£ 2L
AE. + AE,, kinetic energy losses
AEff + AEPQ + AEZ losses due to convection
. (‘
AE; + AES? + AR losses due to heat conduction
Y L2

energy gain due to

2@/}(/}p'+pi) DIVW r dr dz dt
magnetic field compression

f°00

e v,
AEK + AEg

E(t=t,) + AEg

e
A.E;-— 0)

energy if no losses present

[E(to) t+ AEg - E*]/ E® measure for energy conservation

enerqgy losses due to radiation



References:

/ 1/ M.ROSENBLUTH: "Dynamics of a Pinched Gas", Sct. 1 in
'Magnetohydrodynamics? by R.K.M.Landshoff, Stanford
University Press, Stanford, 1957

/ 2/ H.KEVER: "Zur Theorie der magnetischen Kompression
zylindersymmetrischer Plasmen”, Laboratory Report JUL-2-PP,
Kernforschungsanlage Julich, (1960)

/ 3/ K.BOYER,W.,C.ELMORE,E.M.LITTLE,W.E.QUINN and J.L.TUCK:
"Studies of Plasma Heated in a Fast-rising Axial Magnetic
Field (SCYLLA)", Phys. Rev. 119,831 (1960)

/ 4/ B.WILHELM: "Die Energieaufnahme der Ionen in einem sehr
schnellen Theta-Pinch", Z.Physik 222, 208-221 (1969)

/ 5/ L.SPITZER,Jr.: "Physics of Fully 1Ionized Gases",
Interscience Publishers, New York-London, 1962

/ 6/ R.Z.SAGDEEV: Proc. Symp. in App. Maths. (April 1965),
American Math. Soc. XVIII p.281 (1967);
R.Z.SAGDEEV,A.A.GALEEV: TI.A.E.A. Report 1IC/66/64 Trieste
{1966)

/ 7/ H.A.B.BODIN, J. McCARTAN,A.A.NEWNTON and G.WOLF:
Diffusion and Stability of high- Plasma in an 8 Metre
Theta Pinch", Third I.A.E.A. Conference on Plasma Physics
and Controlled Fusion Research, Novosibirsk, (1968)

/ 8/ D.DOCHS: "untersuchungen dber den Einfluss von
Neutralgas auf die Dynamik der Theta-Pinch-Entladungen",
Laboratory Report IPP 1/14, IPP 6/10 (1963)

/ 9/ D.FISHER; Culham Reports ('Radial Version of the 1D-MHD
Code?')

/10, H.FISSER: '"Numerical Solutioas of the Magneto-
hydrodynanic Equations for One-Dimensional Theta-Pinch
Geometry", 'First European Confererence on Controlled Fusion
and Plasma Physics', Minchen 1966

/11, G.HAIN,K.HAIN,W.KéPPENDéRFER,K.V.ROBERTS,S.J.ROBERTS:
"Fully Tonized Pinch Collapse", Zeitschr. Natur., Bd. 15a,
1039-1050 (1960)

/12/ R.CHODURA: "Numerical Investigations of Collisionless
Compression of a Plasma with Anomalous Friction", The
Physics of Fluids, Vol 11, Nr. 2, p. 400-407, 1968

/13/ D.FISHER; Culham Reporté {* Axial Version of the 1D-MHD
Code?')




46

/14/ W.B.JONES,L.M.GOLDMAN,R.W.KILB,R.L.BINGHAM: "Energy and
Particle Loss from a Short Theta Pinch™, Phys.Fluids
13,800-809, (1970)

/15/ W.SCHNEIDER: "One-Dimensional MHD Calculations of the
Axial Behaviour of a Theta Pinch Plasma", IPP Laboratory
Report under preparation

/16/ R.L.MORSE: "Methods in Computational Physics", Vol. 39,
213, Academic Press (1970)

/17/ D.BISKAMP,R.CHODURA: "Computer Simulation of Anomalous
Resistance", Fourth I.A.E.A. Conference on Plasma Physics
and Controlled Pusion Research, Madison(Wisconsin), (1971)

/18/ R.CHODURA K.Graf Finck v. FINCKENSTEIN: "Vlasov
Description of a Supercritical Magneto-acoustic Compression
Pulse", Laboratory Report IPP 1/113, 6,92 (1970)

/19/ K.V.ROBERTS,F.HERTWECK,S.J. ROBERTS: "Thetatron, a
Two-Dimensional Magnetohydrodynamic Computer Programme®,
Laboratory Report CLM-R 29, Culham, 1963

/20/ A.SCHLUTER: "Dynamik des Plasmas", Z.Natur. 5,72 (1950)

/21/ S.CHAPMAN,T.G.COWLING: "The Mathematical Theory of
Non-Uniform Gases", University Press, Cambridge, 1964

/22/ F.HERTWECK: "Allgemeine 13-Momenten-Naherung zur
Fokker-Planck-Gleichung eines Plasmas", Laboratory Report
IPP 6/1 (1962)

/23/ R.CHODURA, F. POHL: "Hydromagnetic Equations for
Anisotropic Plasmas including Transport Coefficients",
Laboratory Report IPP 1/112 (1970)

/24/ V.J.KOGAN: "Plasma Physics and the Problenm of
Controlled Thermonuclear Reactions", M.A.Leontovich Ed.,
Pergamon Press, New York, Vol.1 (1961)

/25/ G.LEHNER: "™On the Relaxation of Anisotropic Plasmas",
Zeitschrift £. Physik 206, 284-292, (1967)

/26/ R.D.RICHTMYER,K.W. MORTON: "pDifference Methods for
Initial-vValue Problems", Interscience Publishers (John Wiley
Sons,inc.), New York-London-Sydney, 1967

/27/ W.SCHNEIDER: "2D{r,z) MHD-Code", IPP Laboratory Report
under preparation

/28/ G.LEHNER,J.NEUHAUSER,F.POHL: private communication, a
simple numerical model for the relaxation of anisotropic
plasmas; based on /25/




47

/23/ G.LEHNER,F.POHL: "The Relaxation of Heavy TIon
Impurities in an Anisotropic Deuterium Plasma", Laboratory
Report IPP 1/91 (1968)

/30/ J.B.TAYLOR,J.A.WESSON: "End Losses from a Theta Pinch",
Nuclear Fusion 5, 159-161 (1965)

/31/ W.BRAUN,M.KAUFHANN,H.RéHR,H.SCHNEIDER: "Digfusion eines
stossfreieg und stosstehafteten Plasmas", Fruhjahrstaqung
der DPG, Munchen, (1970)

/32/  W.ENGELHARDT,W.KOPPENDORFER,M.MUNICH,J.SOMMER: PP
Laboratory Report under preparation

/33/ T.S.GREEN: "An Investigation of the Theta Pinch using
Magnetic Pick-up Loops", Nuclear Fusion 2, 92 (1962)

/347 R.F.POST: "Controlled Fusion Research.- An Application
of the Physics of High-Temperature Plasmas", Rev.Modern
Phys. 28, 338 (1956)

/35/ Hans R.GRIEM: "Plasma Spectroscopy", McGraw Hill (1964)

/36/ H,-J.KUNZE,A.H.GABRIEL and Hans R.GRIEM: "Measurements
of Collisional Rate Coefficients for Helium-like Carbon Ions
in a Plasma", The Physical Review, Vol. 165, No.1, p.267-276
(1968)

/37, P.BOGEN,Y.T.LIE,D.RUSBﬁLDT and J.SCHLUTER: "Relaxation
of Ion Pressure Anisotropy and Enerqgy Transfer between Ions
and Flectrons in High Density Plasmas", Conference on Plasma
Physics and Controlled Nuclear Fusion Research, Novosibirsk;
Proceedings {1968)

/38/ T.S.GREEN,D.L,.FISHER,A.H.GABRIEL,TI.J.MORGAN,A,A.NEWTON:
"Enerqgy loss from a Theta Pinch", Phys. Fluids 10, 1663-1675
{1967)

/39/ J.NEUHAUSER: "Geschwindigkeitsverteilung anisotroper
Deuteriumsplasmen aus zeitaufgeldsten Neutronenspektren",
Laboratory Report IPP 1/109 (1970)

/40 / M.KAUFHANN,J.NEUHAUSER,H.RGHR: "Experimental Proof of
Mirror Instabilities in the ISAR I Theta Pinch", Z.Physik
244, 99-216 {1971)

/41y C.ANDELFINGER,E.FﬁNFER,G.LEHNER,H.PARETZKE,F.POHL,
J,SEIDEL,K.Jd.SCHMMER und U.ULRICH: "Untersuchungen =zur
Anisotropie und Relaxation des Plasmas am ISAR I -Mega-
joule-Thetapinch" , Laboratory Report IPP 1/67 (1967)




	IPP 1_124 Deckblatt
	IPP 1_124 Text

